Un punto de inflexión es un punto donde cambia la curvatura de la función.
Si x=a es un punto de inflexión → f”(a)=0
En el problema nos dan 2 datos:
f(x) pasa por el punto (3,1), es decir f(3)=1
x=3 es un punto de inflexión, es decir, f”(3)=0
Con esta información, obtenemos b y d
f(3)=1 → 1=33+b32+2.3+d → 1=27+9b+6+d → 9b+d=-32
f’(x)=3x2+2bx+2
f”(x)=6x+2b
f”(3)=0 → 6.3+2b=0 → 18+2b=0 → 2b=-18 → b=-18/2=-9
9b+d=-32; 9.(-9)+d=-32; -81+d=-32; d=-32+81; d=49
Solución: b=-9 y d=49
No hay comentarios:
Publicar un comentario